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Abstract: This paper presents a hybrid trajectory planning strategy with interpolation curve optimization method under the 
constraints of collision avoidance and vehicle dynamics. With an objective function consisting of a weighted sum of comfort and 
efficiency, the cubic polynomial curve is firstly optimized under the initial state and the terminal state constraints to generate a 
reference trajectory. Then, in order to generate collision-free trajectory, lateral and longitudinal turning factors are introduced to 
cluster the reference trajectory. According to the dimension relationship between vehicle and road, the maximum lane change 
distance and the maximum turning curvature, the number of trajectories in the cluster is constrained. Furthermore, an algorithm 
is designed to detect the collision of the trajectories. The priority of the trajectories is defined to determine the optimal trajectory. 
Finally, a lateral vehicle dynamic model is established. To judge the feasibility, under the condition of dynamic constraints, the 
reference trajectory is tracked with optimal control signal and judged by the tracking effect. In this way, the collision risk is 
eliminated, and the trajectory performance is improved. Simulation results show that the trajectory planning strategy is effective 
in different scenarios.  
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1. Introduction 

Currently, the commonly used vehicle trajectory planning 
methods include graph search methods and parameter 
optimization methods [1]. Graph search methods use 
sampling trajectory primitives (arcs, helices, etc.) which are 
dynamically feasible to establish the graph, and then 
conducts sequential search, and generates the solution 
sequence of geometric primitives. The parametric 
optimization method is continuous optimization and can 
produce an analytical solution of a high order parameterized 
geometric trajectory. The graph search method generates 
global optimal solutions in discrete networks and is often 
used in regional trajectory planning, such as parking lots. 
Parametric optimization methods, which seek local optimal 
solutions in continuous solutions, are often used in 
structured trajectory planning. 

Parameter optimization methods mainly have two 
branches: model prediction method and interpolation curve 
method [2]. 

Model predictive method uses the vehicle model to 
achieve optimal control. State variables that need to be 
constrained, such as speed and trajectory curvature, are used 
as control variables to obtain the predicted trajectory. Cost 
functions are defined according to the information of 
trajectory terminal deviation and danger indicators, and then 
the final control input is found through optimization to 
obtain the optimal executable trajectory under the optimal 
control signal. The model prediction method can fully 
consider the dynamic constraints of the vehicle and ensure 
the executability of the planned trajectory. The defect is that 
the complexity of the model and the efficiency of the 
algorithm cannot be guaranteed at the same time, and one of 
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them must be sacrificed [3]. In addition, the model 
prediction method usually adopts numerical method to solve 
the curve parameters corresponding to the terminal state, and 
its convergence is often hard to be achieved [4]. 

Interpolation curve optimization inserts parameterized 
curves between existing target trajectory points, and 
establishes cost functions [1] from the perspectives of 
comfort and safety to optimize parameterized curves. 
Interpolation curve optimization in the reference line 
coordinate system can ensure that the planned trajectory 
adapts to the changes of road curvature [5]. The advantage 
of interpolation curve optimization method is that it is 
convenient to consider comfort, safety and other properties 
from the perspective of kinematics of the trajectories. The 
current problem of this method is that it is difficult to 
consider the influence of vehicle dynamics constraints, tire-
road relationship and other factors in real-time planning. 

This paper presents a hybrid trajectory planning strategy 
with interpolation curve optimization method under the 
constraints of collision avoidance and vehicle dynamics. The 
reference trajectory is tracked with optimal control signal 
and judged by the tracking effect. The collision risk is 
eliminated, and the trajectory performance is improved. 

2. Reference Trajectory Generation 

The first step of using interpolation curve optimization for 
intelligent vehicle trajectory planning is to determine the 
generation space of interpolation curve. At present, there are 
two kinds of coordinate systems in common use. Trajectory 
planning in the world coordinate system has been widely 
studied. The method with Frenét frame [6] has been applied 
in Baidu driverless open-source platform for intelligent 
vehicle trajectory planning, which can adapt the planned 
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trajectory to follow the road curvature, but it is inconvenient 
to analyze vehicle dynamics constraints in Frenét frame. 

In this paper, in the world coordinate system, suitable 
curve types are selected from the following interpolation 
curves for trajectory planning with fully considering vehicle 
dynamics constraints. 

The curve types commonly used in trajectory planning 
include polynomial curve, spline curve, hyperbolic tangent 
curve, helix curve, sinusoidal curve, etc[1,7,11]. 

Helical trajectory can control the maximum curvature of 
the trajectory, but its lateral acceleration is not smooth. This 
problem also exists in sinusoidal trajectories. Spline 
trajectories can meet the continuity of multi-order 
derivatives and the spatial constraints of trajectory by 
adjusting control points, but the large number of parameters 
is not conducive to curve optimization and analysis of 
dynamic constraints [7]. Hyperbolic tangent curve has few 
trajectory parameters and all derivatives are smooth. 
However, due to its special curve shape, it is only applicable 
to special scenes such as lane change [8]. 

For polynomial trajectories, these problems can be 
reduced because the degree of the polynomial can be 
adjusted to achieve the desired performance and to ensure 
that the state constraints at the start and end times are met. 

In this paper, the cubic polynomial trajectory is used for 
intelligent vehicle trajectory planning. The parameterized 
curve of its trajectory with respect to time is defined as: 

 ൜
𝑥ሺ𝑡ሻ ൌ 𝑎ଷ𝑡ଷ ൅ 𝑎ଶ𝑡ଶ ൅ 𝑎ଵ𝑡 ൅ 𝑎଴
𝑦ሺ𝑡ሻ ൌ 𝑏ଷ𝑡ଷ ൅ 𝑏ଶ𝑡ଶ ൅ 𝑏ଵ𝑡 ൅ 𝑏଴

 (1) 

where 𝑎ଵ,𝑎ଶ,𝑎ଷ and 𝑏ଵ 𝑏ଶ 𝑏ଷ  represent coefficients of the 
polynomial curve, and 𝑥ሺ𝑡ሻ, 𝑦ሺ𝑡ሻ are positions of vehicle in 
global coordinate. 

Equation (2) is an example of terminal and terminal 
constraints for lane change scenario of one-way two-lane 
roads, with constraints as follows. It is similar for other 
scenarios. 

 
𝑦ሺ0ሻ ൌ 0,𝑦ሺ𝜏ሻ ൌ 𝑊,𝑦ሶሺ0ሻ ൌ 0,𝑦ሶሺ𝜏ሻ ൌ 0
𝑥ሺ0ሻ ൌ 0, 𝑥ሺ𝜏ሻ ൌ 𝐷, 𝑥ሶሺ0ሻ ൌ 𝑢, 𝑥ሶሺ𝜏ሻ ൌ 𝑢  (2) 

where 𝑊  represents the lane width, 𝜏 represents the total 
time for the vehicle to complete the planned trajectory, 𝐿 is 
the longitudinal length of the trajectory, and 𝑢 is the initial 
and final longitudinal velocity. 

Substitute formula (1) into equation (2). Then the 
trajectory expression is determined as equation (3): 
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The objective function of trajectory optimization is 
defined as follows: 

 
𝐽௠௜௡ ൌ 𝜆ଵ𝑎ଶ ൅ 𝜆ଶ𝜏ଶ ൌ 𝜆ଵ𝐽ଵ ൅ 𝜆ଶ𝐽ଶ

𝑎 ൌ 𝑚𝑎𝑥 ቀඥ𝑥ሷ ଶ ൅ 𝑦ሷ ଶቁቚ
௧ୀ଴∼ఛ

 (4) 

where 𝑎 represents the maximum total acceleration of the 
vehicle, 𝜆ଵand𝜆ଶ represent the weights of two variables. 
During the voyage, passenger comfort mainly depends on 
the size of vehicle acceleration. A greater acceleration will 
bring about a worse passenger experience [9, 10]. Therefore, 
𝐽ଵ in the objective function represents the optimal comfort 
performance of the desired trajectory during trajectory 
planning. 𝐽ଶ  is the efficiency of the planned trajectory, 

representing that the lane change operation is expected to be 
completed as soon as possible. 

According to the above constraints and objective function, 
the trajectory interpolation curve is optimized to obtain the 
optimal trajectory as formula (5): 
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where 𝑥∗ሺ𝑡ሻ and 𝑦∗ሺ𝑡ሻ represent the optimal trajectory with 
weights of 𝜆ଵ and 𝜆ଶ, which need to be adjusted according to 
the information of the surrounding environment of the 
vehicle, to realize the generation of the optimal trajectory 
according to the current vehicle condition. With initial value 
𝜆ଵ ൌ 𝜆ଶ ൌ 0.5, the trajectory is shown as Fig. 1, which will 
be further used as a reference trajectory. 
 

 
Fig. 1: Reference trajectory. 

 

3. Trajectory Clustering 

In trajectory planning, the intelligent vehicle needs to 
generate a group of alternative trajectories to get a new 
optimal trajectory when the current trajectory is not feasible 
[11-13]. Longitudinally expands the trajectory by changing 
the weight of the objective function, and laterally expands 
the trajectory by expanding the expected state at the end 
moment, generating the planned trajectory cluster. 

3.1 Longitudinal Trajectory Clustering 

The function of longitudinal expansion is to adjust the 
weight of comfort and efficiency, using the method of 
adjusting both the numerator and the denominator to make 
sure that the trajectory is evenly distributed in space, as 
follows: 
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where 𝑝 represents the ratio of the weights of the objective 
function, which is defined as the longitudinal turning factor, 
𝑑௞ and 𝑁௑ represent the turning quantity and amplitude. The 



  

number of trajectories N formed by expansion is as formula 
(7): 

 𝑁 ൌ ሺ2𝑁௑ ൅ 1ሻ (7) 
When the curvature of the trajectory is small enough, it is 
approximately equal to the second derivative of the 
longitudinal displacement with respect to the transverse 
displacement, which can be obtained as formula (8): 

 𝑘 ൎ
3𝑊

2𝐾ଶ𝑢ଶ
 (8) 

where 𝑘  represents the maximum curvature of the 
trajectories. Since the purpose of the above calculation is to 
determine the expansion of the trajectory cluster, the error of 
the above approximate calculation is within the acceptable 
range. The maximum curvature constraint by the vehicle's 
bicycle model regulates the upper limit of factor 𝐾 as 
formula (9): 

 𝐾 ൏ ඨ
3𝑊

2𝑘௠௔௫𝑢ଶ
 (9) 

where 𝑘௠௔௫  represents the maximum curvature of the 
trajectory, which is later determined from the vehicle's 
bicycle model.  

The lower limit of regulating factor K is constrained by 
the longest lane change distance as formula (10): 
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where 𝐿௠௔௫ represents the maximum longitudinal length of 
the trajectory.  

Therefore, as formula (11), the turning factor 𝐾 satisfies: 
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By considering the computational efficiency, the constraints 
of the turning factor can be rewritten as formula (12):  
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The specific value of longitudinal extension 𝑁௑  can be 
obtained by combining the relationship between the 
regulating factor 𝐾 and the transverse extension 𝑁௑. Fig. 2 
shows the trajectory cluster generated by longitudinal 
clustering of the reference trajectory. 

 

 
Fig. 2: Longitudinal trajectory clustering. 

 

3.2 Lateral Trajectory Clustering 

Lateral clustering of trajectory has been widely used since 
the early autonomous driving experiments, mainly to ensure 
to achieve a collision-free trajectory [3, 4]. Therefore, the 
expected state of the terminal moment is expanded as 
formula (13): 

 𝑦ሺ𝜏ሻ ൌ 𝑊 േ 𝑖 ∗ 𝑑ௐ, 𝑖 ൌ 0,1, … ,𝑁௒ (13) 

where 𝑑ௐ  and 𝑁௒  represent the turning quantity and 
amplitude.  

In the scenario of single two-lane lane change, only one 
extra terminal state on both sides is needed, and the displace 
width is half the width of the car (0.9m), which can produce 
collision-free trajectories. So 𝑑ௐ ൌ 0.9,𝑁ଢ଼ ൌ 1 . The 
quantity of trajectories formed by expansion is as formula 
(15): 

 𝑁 ൌ ሺ2𝑁௑ ൅ 1ሻ ∗ ሺ2𝑁௒ ൅ 1ሻ ൌ 3 ∗ ሺ2𝑁௑ ൅ 1ሻ (15) 
For the trajectories that does not meet the original 

expected lane centerline, the subsequent planning process 
can be repeated to generate the new trajectory and achieve 
the target lane, as shown in Fig. 3. 

 

 
Fig. 3: Subsequent planning. 

 

4. Optimal Trajectory Selection 

The trajectory cluster generated by trajectory clustering is 
shown in the Fig. 4. The generated trajectory cluster can be 
divided into three sub-clusters: outer cluster, middle cluster 
and inner cluster, since the lateral expansion is once 
extended to both sides. The priority of each trajectory is 
defined and the prior trajectory is selected according to the 
surrounding environment information. 

 

 
Fig. 4: Trajectory clustering classification. 

 
Firstly, all the trajectories in the generated trajectory 

clusters will be checked for collision, and the detection 
algorithm is presented in the following subsection. 

4.1 Collision Detecting Algorithm 

 

 
Fig. 5: Directionality of the cross product. 
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formula (16), their cross product is: 
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0
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𝑥ଵ𝑦ଶ െ 𝑥ଶ𝑦ଵ
൩ (16) 

Which can be denoted as formula (17): 
 𝑎 ൈ 𝑏 ൌ 𝑥ଵ𝑦ଶ െ 𝑥ଶ𝑦ଵ (17) 

According to the directivity of the cross product, we can 
check whether a point is in a rectangular region as formula 
(18): 

 ൜  
ሺ𝐴𝐵 ൈ 𝐴𝑃ሻሺ𝐷𝐶 ൈ 𝐷𝑃ሻ ൐ 0
ሺ𝐶𝐴 ൈ 𝐶𝑃ሻሺ𝐵𝐷 ൈ 𝐵𝑃ሻ ൐ 0

 (18) 

Assuming that the trajectories of obstacle vehicles in the 
future has been obtained, we can judge whether a collision 
will occur in the future by whether some detecting points of 
the obstacle vehicles are within the boundaries of ego 
vehicle, as shown in Fig. 6 below. 

 

 
Fig. 6: Trajectory clustering classification. 

 
In this method, the outline of the vehicle as a rectangle, 

select five detecting points in the obstacle vehicles, which 
contain four corners of the boundaries and geometrical 
center. If at any time in the future, one of these detecting 
points is located within the boundaries of ego vehicle, the 
collision is detected. 

For the ego vehicle and obstacle vehicles, the trajectory of 
the four corners of its boundaries is calculated as follows: 
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where 𝐵 is a matrix related to the vehicle size, and 𝑅 is the 
rotation matrix as formula (20): 
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where 𝑙  and 𝑤  is the length and width vehicles, 𝜑ሺ𝑡ሻ 
represents the heading angle of the vehicles. 

4.2 Priority of Trajectory 

If all trajectories of the middle cluster are collision-free, 
all feasible trajectories of the vector to the target state are 
safe. Thus, the priority is defined as formula (21): 

 𝐶 ൌ 𝜆ଵሺ1 െ 𝑖ሻ (21) 
which means that the priority of the middle cluster is higher 
than that of the outer cluster and inner cluster, and the higher 
the trajectory comfort is, the higher the priority is.  

If there is collision in the middle cluster trajectory, there 
are obstacles in the area formed by the feasible trajectories. 
Thus, the priority is defined as formula (22): 

 𝐶 ൌ 𝑑ሺ1 െ 0.1 ∗ 𝑖ሻ (22) 
where 𝑑  is the minimum dynamic distance between the 
trajectory and all obstacles, that is, the priority of the middle 
cluster is slightly higher than that of the outer cluster and 
inner cluster, and the higher the security, the higher the 
priority is. The tractor with the highest priority is called prior 
trajectory. 

4.3 Model Predictive Analysis of Trajectory  

The constraint conditions of the planned trajectory cluster 
at the initial and final moments include keeping the vehicle 
speed unchanged before and after the planning. By 
analyzing the transverse and longitudinal velocity of each 
trajectory in the trajectory cluster, it can be concluded that 
the longitudinal velocity has a slight change, while the 
lateral velocity has a significant change to complete the lane-
changing behavior (see Fig. 7 and Fig. 8). 

 

 
Fig. 7: Longitudinal velocity of trajectory cluster. 

 

 
 

Fig. 8: Lateral velocity of trajectory cluster. 
 

Therefore, state space expression of vehicle dynamics [14] 
is established as formula (23): 
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The parameter of the state space expression is calculated 
as formula (24): 
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where ℓ௙  and ℓ௥represent the distances from the center of 
gravity to the front and rear axles, respectively; 𝐼௭ represents 
the moment of inertia of the vehicle about the vertical axis; 

(24) 



  

𝐶ఈ௙ and 𝐶ఈ௥ represent the cornering stiffness of each front 
tire. 

Based on the model above, the optimal control signal is 
solved by model predictive method. Under the condition of 
satisfying constraints of the vehicle, the planned trajectory 
is tracked, and feasibility of the current optimal trajectory is 
under the constraints is judged by the tracking effect. 

When performing control, the predicted trajectory of the 
vehicle should, as far as possible, track the given prior 
trajectory. If the input 𝑈ሺ𝑘ሻ of the system is known, the 
future output 𝑌ሺ𝑘 ൅ 1 ∣ 𝑘ሻ of the system can be predicted by 
solving the equation of state expression: 
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The parameter of the predictive equation is calculated as 
formula (24): 
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where 𝐴ௗ ൌ 𝑒஺ ೞ் ,𝐵ௗ ൌ ׬  ೞ்
଴
𝑒஺ఛ𝑑𝜏 ⋅ 𝐵, and 𝐶ௗ ൌ 𝐶. 

When tracking the trajectory, the tracking error should be 
minimized and the change of control action should be as 
small as possible. Therefore, the objective function is 
defined as follows: 

 

𝐽 ൌ෍  

௣

௜ୀଵ

∥∥Γ௜
௬ሺ𝑦ሺ𝑘 ൅ 𝑖 ∣ 𝑘ሻ െ 𝑦ሺ𝑘 ൅ 𝑖ሻሻ∥∥

ଶ

൅෍  

௠

௜ୀଵ

∥∥Γ௜
௨Δ𝛿ሺ𝑘 ൅ 𝑖 െ 1ሻ∥∥

ଶ                  

 (27) 

where Γ௜
௬  and Γ௜

௨ is weight of each part of the objective 
function. 

For vehicles, not only the above control objectives should 
be satisfied as much as possible through optimization, but 
also the following inequations as formula (28) should be 
satisfied to make the vehicle meet the vehicle steering 
system constraints: 

 
𝛿௠௜௡ሺ𝑘 ൅ 𝑖ሻ ൑ 𝛿ሺ𝑘 ൅ 𝑖ሻ ൑ 𝛿௠௔௫ሺ𝑘 ൅ 𝑖ሻ

Δ𝛿௠௜௡ሺ𝑘 ൅ 𝑖ሻ ൑ Δ𝛿ሺ𝑘 ൅ 𝑖ሻ ൑ Δ𝛿௠௔௫ሺ𝑘 ൅ 𝑖ሻ
𝑖 ൌ 0,1,2⋯ ,𝑚െ 1

 (28) 

where 𝛿௠௔௫ሺ𝑘 ൅ 𝑖ሻ and 𝛿௠௔௫ሺ𝑘 ൅ 𝑖ሻ are the minimum and 
maximum allowed steering wheel angles, and Δ𝛿௠௔௫ሺ𝑘 ൅ 𝑖ሻ 
and Δ𝛿௠௔௫ሺ𝑘 ൅ 𝑖ሻ are the minimum and maximum allowed 
steering speed. 

In this case, the optimization problem is difficult be 
solved analytically, so it needs to be solved by numerical 
optimization method. As formula (29), he general form of 
quadratic programming problem is:  

 
𝑚𝑖𝑛
௫
 𝑥்𝐻𝑥 െ 𝑔்𝑥

 s.t. 𝐶𝑥 ൒ 𝑏
 (29) 

where 𝐻 is Hessian matrix and 𝑔 is the gradient of objective 
function. The constrained optimization problem is described 
as a quadratic programming problem. 

Substitute the prediction output into the objective function 
to obtain formula (30): 

 𝐽 ൌ ሺΔ𝑈ሺ𝑘ሻሻ்𝐻Δ𝑈ሺ𝑘ሻ െ 𝐺ሺ𝑘 ൅ 1ሻΔ𝑈ሺ𝑘ሻ (30) 
The Hessian matrix 𝐻 and 𝐺ሺ𝑘 ൅ 1ሻis obtained as formula 

(31): 
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𝑇
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𝑇
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𝑇൫Γ𝑦൯

𝑇
Γ𝑦ሺ𝑅ሺ𝑘 ൅ 1ሻ െ  𝑆𝑥Δ𝑋ሺ𝑘ሻሻ

 (31) 

Constraints on steering wheel Angle and steering wheel 
speed can be translated into: 
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 (32) 

which is denoted as 
 𝐶Δ𝑈ሺ𝑘ሻ ൒ 𝑏ሺ𝑘 ൅ 1ሻ (33) 

where 𝐼 and 𝐿 represent identity matrix and lower triangular 
matrix 

The constrained optimization problem is transformed into 
the following quadratic programming problem: 

 
𝑚𝑖𝑛
୼௎೘ሺ௞ሻ

 ሺΔ𝑈ሺ𝑘ሻሻ்𝐻Δ𝑈ሺ𝑘ሻ െ 𝐺ሺ𝑘 ൅ 1ሻΔ𝑈ሺ𝑘ሻ

 s.t. 𝐶Δ𝑈ሺ𝑘ሻ ൒ 𝑏ሺ𝑘 ൅ 1ሻ
 (34) 

Solving this quadratic programming problem can predict 
the tracking effect of vehicles on the prior trajectory, as 
shown in the Fig. 9. 

 

 
Fig. 9: prior trajectory tracking. 

In order to evaluate the prediction and tracking effect of 
the prior trajectory under the current constraints, the 
qualification function is defined as formula (35): 

 𝑄 ൌ 𝑚𝑎𝑥‖𝑌ሺ𝑘 ൅ 1ሻ െ 𝑅ሺ𝑘 ൅ 1ሻ‖ (35) 
where 𝑄 represents the maximum displace during tracking.  

When 𝑄 ൏ 0.1, it indicates that the trajectory with the 
highest priority conforms to the vehicle dynamics 
constraints, and this trajectory is regarded as the optimal 
trajectory. When 𝑄 ൐ 0.1 , test downward according to 
decreasing priority until the trajectory with 𝑄 ൏ 0.1  is 
regarded as the optimal trajectory.  



  

5. Simulations and Discussions 

Scenario 1: There is an obstacle vehicle far ahead in the 
current lane, and the speed is lower than the ego vehicle. No 
vehicles in the target lane. 

 

 
Fig. 10: Trajectory planning in Scenario 1. 

 
Scenario 2: There is an obstacle vehicle ahead in the 

current lane, and the speed is lower than the ego vehicle. No 
vehicles in the target lane. 

 

 
Fig. 11: Trajectory planning in Scenario 2. 

 
Scenario 3: There is an obstacle vehicle ahead in the 

current lane, and the speed is lower than the ego vehicle. 
Another obstacle vehicle is in the target lane. 

 

 
Fig. 12: Trajectory planning in Scenario 3. 

 
The collision-free trajectory cluster and prior trajectory of 

each scenario is shown in Fig.10, Fig.11, and Fig.12. After 
tracking with optimal control signal, the prior trajectory in 
each scenario satisfies 𝑄 ൏ 0.1 and can be taken as optimal 
trajectory. 

6. Conclusion 

This paper presented a hybrid trajectory planning strategy 
with interpolation curve optimization method under the 
constraints of collision avoidance and vehicle dynamics. The 
cubic polynomial curve was firstly optimized to generate a 
reference trajectory. Then, in order to generate collision-free 
trajectory, the reference trajectory was clustered. 
Furthermore, an algorithm was designed to detect the 
collision of the trajectories. The priority of the trajectories 
was defined to determine the prior trajectory. The prior 
trajectory was tracked with optimal control signal and 
judged by the tracking effect. Simulation results showed that 

the trajectory planning strategy is suitable in different 
scenarios. Future works will focus on extending the 
proposed strategy to more types of roads and scenarios. 
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